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Abstract

The unnormalizable Susskind-Glogower (SG) phase eigenstates, which

generate a positive-operator-valued measure (POVM) for phase measurements, do

not have the properties of definite phase states, because they are not eigenstates of

the conjugate of the SG phase operator. The probability distribution associated by

the SG-POVM with a quantum state can be interpreted as a phase distribution in

the SG formalism only if the state has less overlap with the vacuum state. While

alleged problems with the SG operator are justified by a discussion of the effect

proposed by Nieto [Phys. Lett. A 60, 401 (1977)], due to measuring a phase difference

via the media of reference phases, a well-behaved phase operator with the

conventional nonunitary approach can be constructed by introducing the exact

form of the amplitude term in the decomposition of annihilation operator of the

harmonic oscillator.
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The positive-operator-valued measure (POVM), or probability operator measure

(POM), generated by the unnormalizable Susskind-Glogower (SG) phase eigenstates, is a

useful theoretical tool for investigating quantum phase measurements. 1 Lane et al. 2

have recently performed interesting computer simulations of maximum-likelihood

scheme of multiple phase measurements, which utilizes the SG-POVM, and the results

suggest a limiting phase sensitivity less than 1/N, where N is the average number of

detected photons. In the introduction of their paper they have also made statements on

the properties of the SG-POVM. We feel it would be useful to make some clarification

on the concept of the SG-POVM.

In their introduction they begin with a discussion of the SG operator and its alleged

problems 3 from the fact that the SG operator
^

eiφ = 
^

 cosφ + i 
^

 sinφ

 ≡ 
n=0

∞

∑ |n><n+1| = ( ^N +1)-1/2  â,                                           (1)

has (unnormalizable) eigenstates

|eiφ> = 
n=0

∞

∑ einφ|n> ,                                                          (2)

where
^

eiφ|eiφ> = eiφ|eiφ> ;                                                          (3)

these provide a resolution of the identity operator

 ⌡
⎮
⌠

φ0

φ0+2π

dφ
2π|eiφ><eiφ| = 1̂.                                                             (4)

Because the eigenstates Eq. (2) have definite phase as suggested in Ref. [4], the

completeness property Eq. (4) is ready to associate a phase probability distribution with

any quantum state |ψ>,

P|ψ>(φ) ≡ <ψ|(
1
2π|eiφ><eiφ|)|ψ> = 

1
2π|<eiφ|ψ>|2  .                                 (5)

Since

∫
φ0

φ0+2π

dφ cos2φ P|ψ>(φ) = <ψ|(
^

 cosφ)2|ψ> + 
1
4|<0|ψ>|2   ,                                (6)

(an identical relation holds also for sinφ ), they raised a puzzle for argument that the

vacuum-state's second moments of cosφ and sinφ, calculated with respect to P|0>(φ),
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equal 1/2, whereas the ideal measurements of that for the Hermitian operators ^ cosφ and
^ sinφ equal 1/4.

However, contrary to what they believed, the eigenstates Eq. (2) in fact do not have

the properties of states with definite phase. This can be easily seen from the fact that the

conjugate of 
^

e iφ

 (
^

eiφ)† = 
n=0

∞

∑ |n+1><n|                                                           (7)

does not have the states Eq. (2) as eigenstates: 5

(
^

eiφ)†|eiφ> = e-iφ [|eiφ> - |0>].                                                    (8)

Consequently, in a strict sense, Eq. (5) cannot be interpreted as a phase probability

distribution,6 but rather, a probability distribution of finding a complex-valued eiφ

corresponding to the state |eiφ> in a given state |ψ> in the theory of generalized

measurements, as is exactly stated in Eq. (5) itself.

Nevertheless, in the representation formed by the SG eigenstates (2), when a state

|ψ> has less overlap with the vacuum state |0>, from Eq. (8) it can be seen that the

matrix element

<ψ|(
^

eiφ)†|eiφ> =  e-iφ [<ψ|eiφ> - <ψ|0>] ≈ e-iφ <ψ|eiφ> .                           (9)

From this condition it is then possible to relate P|ψ>(φ) approximately as a phase

probability distribution to the state |ψ> to describe the statistics of an ideal phase

measurement. This is in agreement with the viewpoint in a recent paper on phase

states and operators 7 that a quantum state |ψ> can be assigned a definite phase "only if

it is a large-amplitude localized state."

In this way, we can suggest that the SG-POVM is a convenient way of packing the

information of phase variables with computational advantages, from which one

derives the probability distribution for an ideal phase measurement whenever the

concerned quantum state |ψ> is far from the vacuum state. From the probability

distribution one can calculate the expectation value of any function of φ, for instance, as

shown in Eq.(6), as long as the overlap in the second term of the right-hand side tends to

zero. The physical nature of phase variables reflected from the SG-POVM, however, is

the same as that in terms of the SG operator as extensively reviewed by Carruthers and

Nieto,8 since in quantum mechanics a representation is used only to minimize the
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labor in which the representatives of the more important vectors and operators

occurring in the problem are as simple as possible.

Thus, the alleged problems with the SG phase operator remain unsolved that the

vacuum-state second moments of ^ cosφ and ^ sinφ equal 1/4, although they should not

come from expectations, but with physical justification.2 Indeed, the number states are

states with random phase might merely be one's expectation with the "naive" Dirac

theory as a basis, number and phase are conjugate observables;9 but a correct definition

of the phase operator should not lead to unreasonable predictions. We shall begin the

justification with physical reasoning based on arguments concerning uncertainties in

phase measurements. Nieto has successfully analyzed the reported phase

measurements 10 in terms of phase-difference operators:11

^
 cos12φ= 

^
 cos1φ

^
 cos2φ + 

^
 sin2φ

^
 sin1φ ,                                           (10)

^
 sin12φ= 

^
 sin1φ

^
 cos2φ - 

^
 sin2φ

^
 cos1φ  .                                                         (11)

Because an absolute phase is not a physically measurable quantity, a phase

measurement is usually performed by measuring the phase difference relative to a

reference field. Assuming that the radiation fields are in coherent states

|αi> = exp[-
1
2 |αi|2] ∑

n = 0

∞
αn

n ! |n> ,                                             (12)

where αi is complex and <αi|
^N|αi> = |αi|2 is the average photon number, one gets the

phase-difference uncertainty of two uncorrelated fields 1 and 2

(Δφ)2
PD = (Δ ^cos12 )2 + (Δ ^sin12 )2

= 1 - 
1
2 e-N1 - 

1
2 e-N2 - ψ(N1)ψ(N2)   ,                                   (13)

ψ(Ni) =Nie-2Ni [ ∑
n = 0

∞
Nin

n!(n + 1)1/2]2 ,   (i = 1, 2).                                 (14)

Thus, the phase uncertainty [cf. (Δφ)2
P] of a radiation field, for example, field 1, can be

inferred by measuring the phase difference relative to a reference field 2 with a well-

defined classical phase as N2 → ∞. In a real case, the average photon number N2 is

always finite and the phase uncertainty of the reference field also contributes, although

one should not expect in the nonunitary approach that (Δφ)2
PD is a simple sum of phase

uncertainties of fields 1 and 2 as in the Hermitian phase approach.12, 13 However, this is

not the case as shown in Fig. 1, in which the SG formalism predicts that in the small-
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photon-number region (Δφ)2
PD approaches to zero, even though both the phase

uncertainties of uncorrelated fields 1 and 2 tend to their maximum value 1/2.

Generally, one can consider an effect, also discussed by Nieto,11 due to measuring a

phase difference via the media of reference phases. The phase operators ^COS1k and ^SIN1k,

by going through the steps 2, 3, ..., k-1, are given as

^COS1k = 
^

 cos1kφ 
  j=2

k−1

∏  [(
^

 cosjφ)2 + (
^

 sinjφ)2] = cos^
1kφ  

  j=2

k−1

∏  [1 - 
1
2 P0(0)],              (15)

^SIN1k = 
^

 sin1kφ 
  j=2

k−1

∏  [(
^

 cosjφ)2 + (
^

 sinjφ)2] = sin^
1kφ  

  j=2

k−1

∏  [1 - 
1
2 P0(0)],              (16)

where P0(0) is the projector onto the vacuum state. In Fig. 2 the uncertainties of phase

difference (Δφ)2
PD k via different steps are calculated in radiation fields described by

identical coherent states (12)

(Δφ)2
PD k = (Δ ^COS1k )2 + (Δ ^SIN1k )2

              = [1 - e-N] 
  j=2

k−1

∏ [1 - 
3
4 e-N] - [ψ(N)]2 

  j=2

k−1

∏  [1 - 
1
2 e-N]2.                       (17)

From Fig. 2 it can be recognized that the extremely small (Δφ)2
PD k range stretches into

the large-N region with increasing steps.

The seriousness of the problem becomes more explicit when studying a case in

which vacuum fields are chosen in the intermediate steps. The whole curve of (Δφ)2
PD k

will be quickly lowered to the zero level with only a few steps (by a factor 1/4k-2, k-2 is

the intermediate step number), because the expectation of each term added to the

multiplication in the right-hand sides of Eqs. (15) and (16) is always less than unity

(especially, 1/2 for the vacuum). This prediction of reduced uncertainty with increasing

reference steps turns out contrary to measurement theories (both quantum and

classical) that the uncertainty is accumulated through various participating steps in a

measurement process.

Thus, this Nieto effect suggests a criterion to test a phase operator whether with

proper physical implication, i.e., the expectation value of the sum of the second

moments of the Hermitian real and imaginary parts in any quantum state |ψ> must be

no less than unity.

To get a reasonable definition of the phase operator with the conventional

nonunitary approach, let us return to the origin of the phase problem from which the

SG operator came,14 i.e., Dirac's decomposition of the annihilation (or creation)

operator corresponding to the classical procedure of separating the complex amplitude
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into a real amplitude and a phase factor. Generally, because of the particular number

spectrum N  of the harmonic oscillator that runs only from 0 to ∞ , a physical

decomposition depends on cautious selection, around the lower bound of N = 0,  of not

only the order of separation but also the form of the amplitude. For example, when the

form of amplitude proportional to ^N1/2 is chosen in the Dirac formalism, the action of

the Dirac phase factor

 
^

eD
iφ = â ^N-1/2                                                                 (18)

on the vacuum is indeterminate due to N including the zero eigenvalue and therefore

no inverse. This difficulty was removed by Susskind and Glogower when replacing the

definition Eq. (18) with the unambiguous form Eq. (1).

However, by careful examination of the Hamiltonian structure ^H  of the harmonic

oscillator one finds that the form of the amplitude should be proportional to ( ^N

+1/2)1/2, where the factor 1/2 corresponds to the zero-point energy of the vacuum. In

fact, the exact amplitude operator of the oscillator (unit mass) takes the form

^A ≡ (2 ^H)1/2/ω  = A0 (
^N + 1/2)1/2  ,                                            (19)

where A0 = (2h/ω)1/2.

Consequently, the decomposition with the amplitude proportional to ( ^N +1/2)1/2

yields15

^E = ( ^N +1/2)1/2 â  ,                                                           (20)

with the following properties
^E ^E† = 1 + 

1

 2 ^N + 1
   ,                                                          (21)

^E† ^E = 1 + 
1

 2 ^N - 1
  ,                                                            (22)

and

[^C, ^S] = 
1
2i(

1

 2 ^N + 1
 -

1

 2 ^N - 1
)  ,                                                  (23)

^C2 + ^S2 = 1 + 
1
2(

1

 2 ^N + 1
 +

1

 2 ^N - 1
) ,                                              (24)

where ^C and ^S are the Hermitian real and imaginary parts of ^E. From Eq. (24) it is seen

that the definition Eq. (20) meets the above Nieto criterion.16

The fact that the exact amplitude is proportional to ( ^N +1/2)1/2 therefore explains

the problems in defining a phase operator. The Dirac decomposition with ^N 1/2 is

equivalent to taking the vacuum energy as zero. For an empty field the phase will be no

longer meaningful, and the decomposition (18) becomes unperformable with the
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vacuum. The SG decomposition with ( ^N  +1)1/2  corresponds to taking the zero-point

energy as hω, which overcounts the actual one by 
1
2hω. As a result, abnormal smaller

phase uncertainty in a given quantum state |ψ> develops. On the other hand, The factor

1/2 in the amplitude Eq. (19) prevents the phase definition from ambiguity when

applied to the vacuum. Eqs. (21) and (22) show the non-unitary property of ^E in any state

of the oscillator, which approaches unity gradually with increasing N as required by the

correspondence principle. This nonunitarity leads to the relations (23) and (24),

indicating an extra uncertainty added to the phase uncertainty that can be expected from

the simpler Dirac theory, and guarantying the satisfaction of the Nieto criterion. As a

matter of fact, the non-commuting property of the phase operator is intrinsic within the

framework of quantum mechanics as a direct result of decomposition of the non-

commuting  annihilation operator, which has been recently re-discussed from a

quantum phase anomaly viewpoint.17, 18

Thus, we can also conclude that, with the further investigations of quantum phase

measurements, one no longer rests content with correspondence-principle-type

arguments in the large-N limit, such as imposed by the Lerner criterion,19 but more lays

stress on the small-N behavior of phase operators.13 With the exact amplitude form in

the decomposition of the annihilation operator, which has rightly taken the zero-point-

energy effect into account, a nonunitary phase operator free from alleged problems can

be constructed.

We thank Dr. S. Hughes for enlightening discussions.
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Figure captions

Fig. 1. The phase-difference uncertainty (Δφ)2
PD of a radiation field in a coherent state

|α1> relative to a reference field in |α2>. (Δφ)2
PD tends to the phase uncertainty of field 1

as N2 → ∞.

Fig. 2. Phase-difference uncertainties (Δφ)2
PDk via different intermediate steps of

radiation fields in the identical coherent states (solid curves): a) without intermediate

step; b) 10 steps; c) 102 steps; d) 103 steps; e) 104 steps. The dashed curve shows the phase

uncertainty of a single field. In the large-N limit, (Δφ)2
PD k tend to the double of the phase

uncertainty of a single field. If vacuum fields in stead of coherent-state fields are used in

the intermediate steps, the curve (a) in the whole range of N will be rapidly lowered to

the zero level with only a few steps.
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